收录期刊

    高级检索
    侯精明, 潘鑫鑫, 陈光照. 基于AI的洪涝过程快速模拟预报方法及应用[J]. 中国防汛抗旱, 2024, 34(2): 1-7. DOI: 10.16867/j.issn.1673-9264.2023495
    引用本文: 侯精明, 潘鑫鑫, 陈光照. 基于AI的洪涝过程快速模拟预报方法及应用[J]. 中国防汛抗旱, 2024, 34(2): 1-7. DOI: 10.16867/j.issn.1673-9264.2023495
    HOU Jingming, PAN Xinxin, CHEN Guangzhao. AI-driven rapid simulation and forecasting techniques for flooding processes and their practical application[J]. China Flood & Drought Management, 2024, 34(2): 1-7. DOI: 10.16867/j.issn.1673-9264.2023495
    Citation: HOU Jingming, PAN Xinxin, CHEN Guangzhao. AI-driven rapid simulation and forecasting techniques for flooding processes and their practical application[J]. China Flood & Drought Management, 2024, 34(2): 1-7. DOI: 10.16867/j.issn.1673-9264.2023495

    基于AI的洪涝过程快速模拟预报方法及应用

    AI-driven rapid simulation and forecasting techniques for flooding processes and their practical application

    • 摘要: 针对洪涝预报对时效性较高的技术需求,基于AI技术,结合基于物理过程的水文水动力模型,通过对典型暴雨和洪涝过程进行学习训练,形成可快速预报洪涝过程的AI方法。首先构建研究区域洪涝过程的水文水动力数值模型;其次使用水文水动力模型模拟计算不同降雨下的洪涝过程,形成成果库;再次使用不同类型的AI学习方法,对降雨主要特征要素和洪涝过程的相关关系进行机器学习,并验证该学习方法的可靠性,形成该研究区域洪涝过程的快速模拟预报机器学习模型;最后输入预报降雨值,应用机器学习模型快速预报洪涝过程。分城市内涝和流域洪水两种洪涝类型进行了方法介绍和应用展示。表明所构建的AI模型可在相似精度的基础上,较物理过程模型提速300~400倍。

       

      Abstract: To address the high demand for timely flood forecasting, this paper introduces AI technology in conjunction with physics-based hydrodynamic models. By training on typical heavy rainfall and flood processes, a rapid AI-based method for flood prediction is developed. Initially, a hydrodynamic numerical model for studying the flood processes in the research area is established. Subsequently, this model is used to simulate and compute flood processes under different rainfall scenarios, forming a database of outcomes. Different AI learning methods are then employed to the machine learning for the correlation between key rainfall features and flood processes, validating the reliability of this learning method. This leads to the creation of a rapid simulation and forecasting machine learning model specific to the studied area's flood processes. Finally, inputting forecasted rainfall values allows the application of the machine learning model for fast flood prediction. This paper delineates methodologies and showcases applications for two flood types as urban inundation and watershed flooding.Results demonstrate that the developed AI model can achieve over 300 ~ 400 times acceleration compared to physics-based models with a similar level of accuracy.

       

    /

    返回文章
    返回